Intuitively, the completeness of \mathbb{R} can be understood as follows:

If \mathbb{R} is represented as a straight line that extends indefinitely in both directions, the completeness of \mathbb{R} corresponds to the continuous nature of the line (solid line, no gaps).

Bounds
A set $S \subseteq \mathbb{R}$ is bounded above if there exists some $H \in \mathbb{R}$ such that $x \leq H$ for every $x \in S$. If H exists, it is called an upper bound of S.

A set $S \subseteq \mathbb{R}$ is bounded below if there exists some $h \in \mathbb{R}$ such that $h \leq x$ for every $x \in S$, If h exists, it is called a lower bound of δ.

No lower bounds, os upper b.
A set which is both bounded below and above is just said to be bounded.

Examples:
(i) $\{1,2,3\}$ Bounded

Bounded above: upper bounds 3,10,1000 bounded below: lower bounds 1, $-10,-1000$
(ii) $\{x: 1 \leqslant x<2\}$ $1 . \overline{9}=2$

Bounded above: $2,3,50$,

Bounded below: $1,0,-12,-1 \mathrm{M}$.
(iii) $\{x: x>0\}$

Not bounded above because for eve H in the set, $H+1>H$ and $H+1$ is also in the set Bounded below: $0,-1,-18, \ldots$

Continuum property
Every non-empty set of real numbers which is bounded above has a smallest upper bound. (supremum $B=$ sups)
Every non-empty set of real numbers which is bounded below has a greatest lower bound. (infimum $b=$ inf s)

Examples:
(i) $\{1,2,3\}$

Supremum: 3
Infimum: 1
(ii) $\{x: 1 \leq x<2\}$

Infimum: 1
Supremum: 2
(iii) $\{x: x>0\}$

Unbounded above \Rightarrow no sopremum Infimum: 0

Maximum and minimum

If a non-empty set S is bounded above and $B=\sup S \in S$, then B is called the maximum of S.

If a non-empty set S is bounded below and $b=\inf S \in S$, then b is called the minimum of δ.

Examples:
(i) $\{1,2,3\}$ Not an interval

Maximum? yes 3
Minimum? yes 1
(ii) $\{x: 1 \leq x<2\} \quad$ Interval

Maximin? No
Minimum? yes 1
(iii) $\{x: x>0\}$ Interval

Max? No, not bounded above.
Min? No

Intervals
An interval I is a set of real numbers with the property that, if $x \in I$ and $y \in I$ and $x \leqslant z \leqslant y$, then $z \in I$.

Notation:

- Bounded intervals:

1. $(a, b)=\{x: a<x<b\}$
2. $[a, b]=\{x: a \leq x \leq b\}$
3. $[a, b)=\{x: a \leq x<b\}$
4. $(a, b]=\{x: a<x \leqslant b\}$

- Unbounded intervals:

5. $(a, \infty)=\{x: x>a\}$
6. $[a, \infty)=\{x: x \geq a\}$
7. $(-\infty, b)=\{x: x<b\}$
8. $(-\infty, b]=\{x: x \leq b\}$.

Example: Identify the set $A=\{x:|x| \leq 3\}$.

Case I: if $x>0$ then $|x|=x$
so $|x| \leq 3 \Rightarrow x \leq 3$
Case II: if $x \leq 0$, then $|x|=-x$
so $|x| \leq 3 \Rightarrow-x \leq 3$ or $-3 \leq x$

Putting case I and case II together we get

$$
-3 \leq x \leq 3
$$

Example: Identify the set

$$
B=\{x:(x-1)(x-2)(x-3)<0\}=(-\infty, 1) \cup(2,3)
$$

